首页> 外文OA文献 >Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification
【2h】

Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification

机译:蚕丝-二氧化硅融合蛋白设计对二氧化硅在体外和细胞钙化中的凝结的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterials integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGG QG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have significant effect on wettability and surface energies, while the C - terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cells (hMSC) differentiation were demonstrated for both variants of the fusion proteins.
机译:通过基因工程进行的生物材料设计可用于蛋白质的合理功能化,以促进生物材料整合和组织再生。蜘蛛丝因其生物相容性,生物降解性和非凡的材料性能而被广泛研究。作为一种基于蛋白质的生物材料,蜘蛛丝的重组DNA衍生衍生物已被生物矿化结构域修饰,从而导致二氧化硅沉积并可能加速骨骼再生。然而,与蜘蛛丝蛋白序列融合的R5(SSKKSGSYSGSKGSKRRIL)硅化域的位置对生物硅化过程的影响尚待确定。在这里,我们设计了两个蚕丝-R5融合蛋白,它们在R5肽的位置(C-与N-末端)不同,其中蜘蛛丝结构域由主要壶腹牵引索斯皮德林的33个氨基酸共有序列的15mer重复序列组成1个来自Nephila锁骨(SGRGGLGG QG AGAAAAAGGA GQGGYGGLGSQGT)。评估了这些重组蛋白的化学,物理和二氧化硅沉积特性,并将其与没有R5的15丝真丝对照进行了比较。 R5肽的位置对润湿性和表面能没有显着影响,而R5的C端位置促进了更可控制的二氧化硅沉淀,这表明蛋白质折叠的差异以及驱动硅化过程的带电氨基酸的途径可能不同。 。此外,对于融合蛋白的两种变体,都证明了体外细胞相容性以及促进人骨髓来源的间充质干细胞(hMSC)分化的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号